Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(2): 361-369, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403312

RESUMO

The 4-coumarate: CoA ligase(4CL) is a key enzyme in the upstream pathway of phenylpropanoids such as flavonoids, soluble phenolic esters, lignans, and lignins in plants. In this study, 13 4CL family members of Arabidopsis thaliana were used as reference sequences to identify the 4CL gene family candidate members of Isatis indigotica from the reported I. indigotica genome. Further bioinformatics analysis and analysis of the expression pattern of 4CL genes and the accumulation pattern of flavonoids were carried out. Thirteen 4CL genes were obtained, named Ii4CL1-Ii4CL13, which were distributed on chromosomes 1, 2, 3, 4, and 6. The analysis of the gene structure and conserved structural domains revealed the intron number of I. indigotica 4CL genes was between 1 and 12 and the protein structural domains were highly conserved. Cis-acting element analysis showed that there were multiple response elements in the promoter sequence of I. indigotica 4CL gene family, and jasmonic acid had the largest number of reaction elements. The collinearity analysis showed that there was a close relationship between the 4CL gene family members of I. indigotica and A. thaliana. As revealed by qPCR results, the expression analysis of the 4CL gene family showed that 10 4CL genes had higher expression levels in the aboveground part of I. indigotica. The content assay of flavonoids in different parts of I. indigotica showed that flavonoids were mainly accumulated in the aboveground part of plants. This study provides a basis for further investigating the roles of the 4CL gene family involved in the biosynthesis of flavonoids in I. indigotica.


Assuntos
Isatis , Ligases , Ligases/genética , Isatis/genética , Regiões Promotoras Genéticas , Plantas/metabolismo , Flavonoides , Coenzima A Ligases/genética , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo
2.
Plant Sci ; 340: 111974, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199385

RESUMO

The AGL6 (AGMOUSE LIKE 6) gene is a member of the SEP subfamily and functions as an E-class floral homeotic gene in the development of floral organs. In this study, we cloned IiAGL6, the orthologous gene of AGL6 in Isatis indigotica. The constitutive expression of IiAGL6 in Arabidopsis thaliana resulted in a late-flowering phenotype and the development of curly leaves during the vegetative growth period. Abnormal changes in floral organ development were observed during the reproductive stage. In woad plants, suppression of IiAGL6 using TRV-VIGS (tobacco rattle virus-mediated virus-induced gene silencing) decreased the number of stamens and led to the formation of aberrant anthers. Similar changes in stamen development were also observed in miRNA-AGL6 transgenic Arabidopsis plants. Yeast two-hybrid and BiFC tests showed that IiAGL6 can interact with other MADS-box proteins in woad; thus, playing a key role in defining the identities of floral organs, particularly during stamen formation. These findings might provide novel insights and help investigate the biological roles of MADS transcription factors in I. indigotica.


Assuntos
Arabidopsis , Isatis , Isatis/genética , Isatis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Flores , Arabidopsis/metabolismo , Pólen/genética , Pólen/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Filogenia
3.
Gene ; 897: 148083, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101709

RESUMO

Light is the main source of energy for plant growth. Studies have shown that I. indigotica is a light-demanding plant and its yield and various active components are positively correlated with light intensity, but no studies of light intensity affecting energy metabolism in I. indigotica have been reported. Mitochondria are the main site of energy metabolism, and miRNAs are important factors in regulating gene expression, this experiment attempts to study the effects of different light intensities on energy metabolism from the perspective of mitochondria and miRNAs. The results show that the biomass、mitochondrial structural integrity and energy metabolism in I. indigotica were found to be positively correlated with light intensity. Small RNA and transcriptome sequencing identified 241 miRNAs and 36,372 mRNAs, and degradomic technology identified 72 miRNAs targeting 106 mRNAs, among which 12 pairs of miRNA-mRNAs were annotated on mitochondria. Combined with RT-qPCR validation, it was concluded that miR167a-5p positively regulates LETM1 and affects mitochondrial structure, miR400-5p and mIR169m-p3_1ss15CT negatively regulate GRXS15 and CMC4, respectively, affecting SDH and CCO activities, and miR395a-APS4 may affect the utilization of ATP and sulfate assimilation. In summary, the results of this study complement and enrich knowledge of light effects on mitochondria from the perspective of miRNA, while providing guidance for the cultivation of I. indigotica.


Assuntos
Isatis , MicroRNAs , Isatis/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Luz , Desenvolvimento Vegetal
4.
Plant Physiol Biochem ; 202: 107977, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37639984

RESUMO

Isatis spp. are well-known for their industrial significance due to natural sources of indigotin and indirubin, important indole alkaloids, used in the dye and pharmaceutical industries. In this study, silver nanoparticles (AgNP) and salicylic acid-chitosan nanoparticles (SA-CNP) were synthesized and applied to enhance the production of indigotin and indirubin in shoot and root cultures of Isatis tinctoria and Isatis ermenekensis. Different doses of AgNP and SA-CNP were administered to three-week-old shoot and root cultures, and the effects were assessed at 12, 24, and 48 h. The harvested samples were analyzed to quantify indigotin and indirubin levels. Furthermore, the expression levels of It-TSA and CYP79B2 genes, known to be involved in indole alkaloid biosynthesis, were determined. In I. tinctoria roots, the highest levels of indigotin and indirubin were observed after applying 150 mg L-1 of SA-CNP for 48 h while in I. ermenekensis shoots, indigotin and indirubin reached the maximum levels with the application of 8 mg L-1 AgNP for 48 h. NP application had no remarkable effects on the accumulation of indigotin and indirubin in I. tinctoria shoots and I. ermenekensis roots compared to controls. Additionally, shoot cultures demonstrated superior indirubin production, which significantly increased with AgNP applications. The gene expression analysis also exhibited significant correlations with the changes in indigotin and indirubin levels. The findings of this study lay the groundwork for enhancing in vitro production of indigotin and indirubin in Isatis species through NP applications, and for developing high-capacity production strategies by determining optimal dosages in scale-up studies.


Assuntos
Quitosana , Isatis , Nanopartículas Metálicas , Índigo Carmim , Isatis/genética , Prata , Alcaloides Indólicos , Ácido Salicílico/farmacologia , Expressão Gênica
5.
BMC Genomics ; 24(1): 465, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596543

RESUMO

BACKGROUND: Isatis tinctoria Linnaeus and Isatis indigotica Fortune are very inconsistent in their morphological characteristics, but the Flora of China treats them as the same species. In this work, a new technology that differs from conventional barcodes is developed to prove that they are different species and to clarify their classification. RESULTS AND METHODS: I. indigotica was indistinguishable from I. tinctoria when using ITS2. CPGAVAS2 was used to construct the chloroplast genomes. MAFFT and DnaSP were used to calculate nucleotide polymorphism, the chloroplast genomes of the two have high diversity in the rpl32 ~ trnL-UAG short region. When using this region as a mini barcode, it was found that there are obvious differences in the base numbers of I. tinctoria and different ploidy I. indigotica were found, but diploid and tetraploid I. indigotica had the same number of bases. Moreover, the reconstruction of the maximum likelihood (ML) tree, utilizing the mini-barcode, demonstrated that I. tinctoria and both diploid and tetraploid I. indigotica are located on distinct branches. The genome size of tetraploid I. indigotica was approximately 643.773 MB, the heterozygosity rate was approximately 0.98%, and the repeat sequence content was approximately 90.43%. This species has a highly heterozygous, extremely repetitive genome. CONCLUSION: A new method was established to differentiate between I. indigotica and I. tinctoria. Furthermore, this approach provides a reference and basis for the directional breeding of Isatis.


Assuntos
Genoma de Cloroplastos , Isatis , Isatis/genética , Tetraploidia , Melhoramento Vegetal , China
6.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1510-1517, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005838

RESUMO

Chalcone isomerase is a key rate-limiting enzyme in the biosynthesis of flavonoids in higher plants, which determines the production of flavonoids in plants. In this study, RNA was extracted from different parts of Isatis indigotica and reverse-transcribed into cDNA. Specific primers with enzyme restriction sites were designed, and a chalcone isomerase gene was cloned from I. indigotica, named IiCHI. IiCHI was 756 bp in length, containing a complete open reading frame and encoding 251 amino acids. Homology analysis showed that IiCHI was closely related to CHI protein of Arabidopsis thaliana and had typical active sites of chalcone isomerase. Phylogenetic tree analysis showed that IiCHI was classified into type Ⅰ CHI clade. Recombinant prokaryotic expression vector pET28a-IiCHI was constructed and purified to obtain IiCHI recombinant protein. In vitro enzymatic analysis showed that the IiCHI protein could convert naringenin chalcone into naringenin, but could not catalyze the production of liquiritigenin by isoliquiritigenin. The results of real-time quantitative polymerase chain reaction(qPCR) showed that the expression level of IiCHI in the aboveground parts was higher than that in the underground parts and the expression level was the highest in the flowers of the aboveground parts, followed by leaves and stems, and no expression was observed in the roots and rhizomes of the underground parts. This study has confirmed the function of chalcone isomerase in I. indigotica and provided references for the biosynthesis of flavonoid components.


Assuntos
Arabidopsis , Isatis , Isatis/genética , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/genética , Flavonoides , Clonagem Molecular
7.
Int J Biol Macromol ; 240: 124436, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37068542

RESUMO

NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) are a class of TFs families unique to plants, which not only play an important role in the growth and developmental stages of plants but also function in response to stress and regulation of secondary metabolite biosynthesis. However, there are few studies on NAC genes in the medicinal plant Isatis indigotica. In this study, 96 IiNAC genes were identified based on the whole-genome data of I. indigotica, distributed in seven chromosomes and three contigs. IiNAC genes were structurally conserved and divided into 15 subgroups. Cis-elements were identified in the promoter region of the IiNAC gene in response to plant growth and development, abiotic stresses and hormones. In addition, transcriptome and metabolome data of I. indigotica leaves under salt stress were analyzed to construct a network of IiNAC gene co-expression and metabolite association. Ten differentially expressed IiNAC genes were co-expressed with 109 TFs, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that most of these genes were associated with plant growth and development and abiotic stress responses. Eleven IiNAC genes were positively associated with 72 metabolites. Eleven IiNAC genes were positively or negatively associated with 47 metabolites through 37 TFs. Commonly associated secondary metabolites include two terpenoids, abscisic acid and bilobalide, two flavonoids, dihydrokaempferol and syringaldehyde, a coumarin, 7-methoxycoumarin, an alkaloid, lupinine, and quinone dihydrotanshinone I. This study provides important data to support the identification of the NAC gene family in I. indigotica and the regulatory functions of IiNAC genes in metabolites under salt stress.


Assuntos
Isatis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Isatis/genética , Isatis/metabolismo , Transcriptoma , Genes de Plantas , Estresse Salino/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Phytochemistry ; 208: 113609, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758886

RESUMO

Nine tetrahydrofuran lignans, including three undescribed spiro-lignans, were isolated from Isatis indigotica Fortune (Brassicaceae). Extensive spectroscopic analyses achieved the structure elucidation of these tetrahydrofuran lignans, and quantum chemical calculation combined with the MAEΔΔδ parameter. Notably, isatispironeols A-B have a unique spiro[dienone-tetrahydrofuran] molecular core. These spiro[dienone-tetrahydrofuran] lignans showed comparable neuroprotective effects as the positive control in the H2O2-induced SH-SY5Y cells model. In addition, (-)-(7R,8S,1'R,7'R,8'R)-isatispironeol A possessed more significant AChE inhibitory activity, further interact sites were also predicted by the in silico assay.


Assuntos
Isatis , Lignanas , Neuroblastoma , Humanos , Lignanas/química , Isatis/química , Acetilcolinesterase , Inibidores da Colinesterase , Peróxido de Hidrogênio , Furanos/química , Estrutura Molecular
9.
Plant Cell Rep ; 42(3): 561-574, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609767

RESUMO

KEY MESSAGE: IiSVP of Isatis indigotica was cloned and its expression pattern was analyzed. Ectopic expression of IiSVP in Arabidopsis could delay the flowering time and reduce the size of the floral organs. SVP (SHORT VEGETATIVE PHASE) can negatively regulate the flowering time of Arabidopsis. In the present work, the cDNA of IiSVP, an orthologous gene of AtSVP in I. indigotica, was cloned. IiSVP was highly expressed in rosette leaves, inflorescences and petals, but weakly expressed in sepals, pistils and young silicles. The results of subcellular localization showed that IiSVP was localized in nucleus. Bioinformatics analysis indicated that this protein was a MADS-box transcription factor. Constitutive expression of IiSVP in Arabidopsis thaliana resulted in decrease of the number of petals and stamens, and curly sepals were formed. In IiSVP transgenic Arabidopsis plants, obvious phenotypic variations in flowers could be observed, especially the size of the floral organs. In comparison with the wild-type plants, the size of petals, stamens and pistil in IiSVP transgenic Arabidopsis plants was decreased significantly. In some transgenic plants, the petals were wrapped by the sepals. Yeast two-hybrid experiments showed that IiSVP could form higher-order complexes with other MADS proteins, including IiSEP1, IiSEP3, IiAP1 and IiSEP4, but could not interact with IiSEP2. In this work, it was proved that the flowering process and the floral development in Arabidopsis could be affected by IiSVP from I. indigotica Fortune.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Isatis , Arabidopsis/metabolismo , Isatis/genética , Isatis/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Proteínas de Arabidopsis/genética
10.
J Integr Med ; 21(1): 77-88, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36192353

RESUMO

OBJECTIVE: AP2/ERF (APETALA2/ethylene-responsive factor) superfamily is one of the largest gene families in plants and has been reported to participate in various biological processes, such as the regulation of biosynthesis of active lignan. However, few studies have investigated the genome-wide role of the AP2/ERF superfamily in Isatis indigotica. This study establishes a complete picture of the AP2/ERF superfamily in I. indigotica and contributes valuable information for further functional characterization of IiAP2/ERF genes and supports further metabolic engineering. METHODS: To identify the IiAP2/ERF superfamily genes, the AP2/ERF sequences from Arabidopsis thaliana and Brassica rapa were used as query sequences in the basic local alignment search tool. Bioinformatic analyses were conducted to investigate the protein structure, motif composition, chromosome location, phylogenetic relationship, and interaction network of the IiAP2/ERF superfamily genes. The accuracy of omics data was verified by quantitative polymerase chain reaction and heatmap analyses. RESULTS: One hundred and twenty-six putative IiAP2/ERF genes in total were identified from the I. indigotica genome database in this study. By sequence alignment and phylogenetic analysis, the IiAP2/ERF genes were classified into 5 groups including AP2, ERF, DREB (dehydration-responsive element-binding factor), Soloist and RAV (related to abscisic acid insensitive 3/viviparous 1) subfamilies. Among which, 122 members were unevenly distributed across seven chromosomes. Sequence alignment showed that I. indigotica and A. thaliana had 30 pairs of orthologous genes, and we constructed their interaction network. The comprehensive analysis of gene expression pattern in different tissues suggested that these genes may play a significant role in organ growth and development of I. indigotica. Members that may regulate lignan biosynthesis in roots were also preliminarily identified. Ribonucleic acid sequencing analysis revealed that the expression of 76 IiAP2/ERF genes were up- or down-regulated under salt or drought treatment, among which, 33 IiAP2/ERF genes were regulated by both stresses. CONCLUSION: This study undertook a genome-wide characterization of the AP2/ERF superfamily in I. indigotica, providing valuable information for further functional characterization of IiAP2/ERF genes and discovery of genetic targets for metabolic engineering.


Assuntos
Isatis , Ácido Abscísico , Isatis/genética , Família Multigênica , Filogenia , Proteínas de Homeodomínio/genética , Genoma de Planta
11.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970622

RESUMO

Chalcone isomerase is a key rate-limiting enzyme in the biosynthesis of flavonoids in higher plants, which determines the production of flavonoids in plants. In this study, RNA was extracted from different parts of Isatis indigotica and reverse-transcribed into cDNA. Specific primers with enzyme restriction sites were designed, and a chalcone isomerase gene was cloned from I. indigotica, named IiCHI. IiCHI was 756 bp in length, containing a complete open reading frame and encoding 251 amino acids. Homology analysis showed that IiCHI was closely related to CHI protein of Arabidopsis thaliana and had typical active sites of chalcone isomerase. Phylogenetic tree analysis showed that IiCHI was classified into type Ⅰ CHI clade. Recombinant prokaryotic expression vector pET28a-IiCHI was constructed and purified to obtain IiCHI recombinant protein. In vitro enzymatic analysis showed that the IiCHI protein could convert naringenin chalcone into naringenin, but could not catalyze the production of liquiritigenin by isoliquiritigenin. The results of real-time quantitative polymerase chain reaction(qPCR) showed that the expression level of IiCHI in the aboveground parts was higher than that in the underground parts and the expression level was the highest in the flowers of the aboveground parts, followed by leaves and stems, and no expression was observed in the roots and rhizomes of the underground parts. This study has confirmed the function of chalcone isomerase in I. indigotica and provided references for the biosynthesis of flavonoid components.


Assuntos
Isatis/genética , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/genética , Flavonoides , Clonagem Molecular
12.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-971639

RESUMO

OBJECTIVE@#AP2/ERF (APETALA2/ethylene-responsive factor) superfamily is one of the largest gene families in plants and has been reported to participate in various biological processes, such as the regulation of biosynthesis of active lignan. However, few studies have investigated the genome-wide role of the AP2/ERF superfamily in Isatis indigotica. This study establishes a complete picture of the AP2/ERF superfamily in I. indigotica and contributes valuable information for further functional characterization of IiAP2/ERF genes and supports further metabolic engineering.@*METHODS@#To identify the IiAP2/ERF superfamily genes, the AP2/ERF sequences from Arabidopsis thaliana and Brassica rapa were used as query sequences in the basic local alignment search tool. Bioinformatic analyses were conducted to investigate the protein structure, motif composition, chromosome location, phylogenetic relationship, and interaction network of the IiAP2/ERF superfamily genes. The accuracy of omics data was verified by quantitative polymerase chain reaction and heatmap analyses.@*RESULTS@#One hundred and twenty-six putative IiAP2/ERF genes in total were identified from the I. indigotica genome database in this study. By sequence alignment and phylogenetic analysis, the IiAP2/ERF genes were classified into 5 groups including AP2, ERF, DREB (dehydration-responsive element-binding factor), Soloist and RAV (related to abscisic acid insensitive 3/viviparous 1) subfamilies. Among which, 122 members were unevenly distributed across seven chromosomes. Sequence alignment showed that I. indigotica and A. thaliana had 30 pairs of orthologous genes, and we constructed their interaction network. The comprehensive analysis of gene expression pattern in different tissues suggested that these genes may play a significant role in organ growth and development of I. indigotica. Members that may regulate lignan biosynthesis in roots were also preliminarily identified. Ribonucleic acid sequencing analysis revealed that the expression of 76 IiAP2/ERF genes were up- or down-regulated under salt or drought treatment, among which, 33 IiAP2/ERF genes were regulated by both stresses.@*CONCLUSION@#This study undertook a genome-wide characterization of the AP2/ERF superfamily in I. indigotica, providing valuable information for further functional characterization of IiAP2/ERF genes and discovery of genetic targets for metabolic engineering.


Assuntos
Ácido Abscísico , Isatis/genética , Família Multigênica , Filogenia , Proteínas de Homeodomínio/genética , Genoma de Planta
13.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4074-4083, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046897

RESUMO

The lignan glycosyltransferase UGT236(belonging to the UGT71 B family) from Isatis indigotica can catalyze the production of phloridzin from phloretin in vitro. UGT236 shares high identity with P2'GT from apple. In this study, the recombinant plasmid pET28 a-MBP-UGT236 was transferred into Escherichia coli Rosetta(DE3) cells and induced by isopropyl-ß-D-thiogalactoside(IPTG). The purified UGT236 protein was used for enzymatic characterization with phloretin as substrate. The results showed that UGT236 had the optimal reaction temperature of 40 ℃ and the optimal pH 8(Na_2HPO_4-NaH_2PO_4 system). The UGT236 activity was inhibited by Ni~(2+) and Al~(3+), enhanced by Fe~(2+), Co~(2+), and Mn~(2+), and did not affected by Mg~(2+), Ca~(2+), Li~+, Na~+, or K~+. The K_m, K_(cat), and K_(cat)/K_m of phloretin were 61.03 µmol·L~(-1), 0.01 s~(-1), and 157.11 mol~(-1)·s~(-1)·L, and those of UDPG were 183.6 µmol·L~(-1), 0.01 s~(-1), and 51.91 mol~(-1)·s~(-1)·L, respectively. The possible active sites were predicted by homologous modeling and molecular docking. By mutagenisis and catalytic activity detection, three key active sites, Glu391, His15, and Thr141, were identified, while Phe146 was related to product diversity. In summary, we found that the lignan glycosyltransferase UGT236 from I.indigotica could catalyze the reaction of phloretin into phloridzin. Several key amino acid residues were identified by structure prediction, molecular docking, and site-mutagenesis, which provided a basis for studying the specificity and diversity of phloretin glycoside products. This study can provide a reference for artificially producing glycosyltransferase elements with high efficiency and specific catalysis.


Assuntos
Isatis , Lignanas , Glucosiltransferases/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lignanas/metabolismo , Simulação de Acoplamento Molecular , Floretina/metabolismo , Florizina/metabolismo
14.
Oxid Med Cell Longev ; 2022: 3567879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795852

RESUMO

Stress that can occur at different levels of a person's life can cause and exacerbate various diseases. Oxidative stress and inflammation underlie this process at the cellular level. There is an urgent need to identify new and more effective therapeutic targets for the treatment of stress-induced behavioral disorders and specific drugs that affect these targets. Isatis tinctoria L. is a herbaceous species in the Brassicaceae family. Due to its potential antioxidant, nitric oxide- (NO-) inhibiting, anti-inflammatory, and neuroprotective properties, I. tinctoria could be used to treat depression, anxiety, and stress resistance. Hence, the present study is aimed at delineating whether administration of I. tinctoria leaf extract may improve stress-induced disorders in mice. A set of four behavioral tests was selected that together are suitable for phenotyping acute restraint stress-associated behaviors in mice, namely locomotor activity, social integration, dark/light box, and splash tests. The plasma and brains were collected. A brain-derived neurotrophic factor, tumor necrosis factor-alpha, C-reactive protein, corticosterone, NO, reactive oxygen species levels, superoxide dismutase and catalase activity, and ferric-reducing antioxidant power were measured. In mice stressed by immobilization, decreased locomotor activity, anxiety-like behavior, and contact with other individuals were observed, as well as increased oxidative stress and increased levels of nitric oxide in the brain and plasma C-reactive protein. A single administration of I. tinctoria leaf extract was able to reverse the behavioral response to restraint by a mechanism partially dependent on the modulation of oxidative stress, neuroinflammation, and NO reduction. In conclusion, Isatis tinctoria hydroalcoholic leaf extract can reduce stress-induced behavioral disturbances by regulating neurooxidative, neuronitrosative, and neuroimmune pathways. Therefore, it could be recommended for further research on clinical efficacy in depression and anxiety disorder treatment.


Assuntos
Isatis , Animais , Antioxidantes/farmacologia , Proteína C-Reativa , Humanos , Camundongos , Óxido Nítrico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
15.
Zhongguo Zhong Yao Za Zhi ; 47(11): 2890-2898, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35718509

RESUMO

The active components, mainly derived from secondary metabolites of medicinal plants, are the material basis for the efficacy of medicinal plants. Lignans, the secondary metabolites in plants with high bioactivity, are widely distributed in a variety of plant species, and their antiviral, antitumor, antibacterial, and antioxidant activities have been proved in clinical practice. Generally, lignans are diverse in structures with many chiral centers, and most of them are optically active. The biosynthesis of lignans depends on the oxidative coupling reaction through site selection and stereo selection, which impedes synthesized lignans to form racemates, but makes them in a three-dimensional configuration. Dirigent protein(DIR) plays an important role in guiding location selection and stereo selection of lignans in biosynthesis. In vitro studies on lignan biosynthesis have shown that racemic end products are obtained in the absence of DIR proteins, while the products in a three-dimensional configuration can be yielded in the presence of DIR proteins, indicating that DIR proteins play an asymmetric role in the biosynthesis of plant secondary metabolites. The present study reviewed the biolo-gical significance of DIR protein, the cloning of DIR gene, gene structure, catalytic mechanism, and the research progress in Isatis indigotica, Eucommia ulmoides, Forsythia suspensa, Salvia miltiorrhiza, Panax pseudoginseng var. notoginseng, and Schisandra chinensis, which provides a reference for the follow-up research of DIR gene.


Assuntos
Forsythia , Isatis , Lignanas , Plantas Medicinais , Schisandra , Lignanas/química , Plantas Medicinais/genética , Schisandra/química
16.
Nutrients ; 14(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35565945

RESUMO

Senescent fibroblasts progressively deteriorate the functional properties of skin tissue. Senescent cells secrete senescence-associated secretory phenotype (SASP) factor, which causes the aging of surrounding non-senescent cells and accelerates aging in the individuals. Recent findings suggested the senomorphic targeting of the SASP regulation as a new generation of effective therapeutics. We investigated whether Isatis tinctoria L. leaf extract (ITE) inhibited senescence biomarkers p53, p21CDKN1A, and p16INK4A gene expression, and SASP secretions by inhibiting cellular senescence in the replicative senescent human dermal fibroblast (RS-HDF). ITE has been demonstrated to inhibit the secretion of SASP factors in several senomorphic types by regulating the MAPK/NF-κB pathway via its inhibitory effect on mTOR. ITE suppressed the inflammatory response by inhibiting mTOR, MAPK, and IκBα phosphorylation, and blocking the nuclear translocation of NF-κB. In addition, we observed that autophagy pathway was related to inhibitory effect of ITE on cellular senescence. From these results, we concluded that ITE can prevent and restore senescence by blocking the activation and secretion of senescence-related factors generated from RS-HDFs through mTOR-NF-κB regulation.


Assuntos
Isatis , NF-kappa B , Senescência Celular , Fibroblastos , Isatis/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Senoterapia , Serina-Treonina Quinases TOR/metabolismo
17.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630700

RESUMO

Chronic hepatitis induced by hepatitis B virus (HBV) infection is a serious public health problem, leading to hepatic cirrhosis and liver cancer. Although the currently approved medications can reliably decrease the virus load and prevent the development of hepatic diseases, they fail to induce durable off-drug control of HBV replication in the majority of patients. The roots of Isatis indigotica Fortune ex Lindl., a traditional Chinese medicine, were frequently used for the prevention of viral disease in China. In the present study, (-)-lariciresinol ((-)-LRSL), isolated from the roots of Isatis indigotica Fortune ex Lindl., was found to inhibit HBV DNA replication of both wild-type and nucleos(t)ide analogues (NUCs)-resistant strains in vitro. Mechanism studies revealed that (-)-LRSL could block RNA production after treatment, followed by viral proteins, and then viral particles and DNA. Promoter reporter assays and RNA decaying dynamic experiments indicated that (-)-LRSL mediated HBV RNA reduction was mainly due to transcriptional inhibition rather than degradation. Moreover, (-)-LRSL in a dose-dependent manner also inhibited other animal hepadnaviruses, including woodchuck hepatitis virus (WHV) and duck hepatitis B virus (DHBV). Combining the analysis of RNA-seq, we further found that the decrease in HBV transcriptional activity by (-)-LRSL may be related to hepatocyte nuclear factor 1α (HNF1α). Taken together, (-)-LRSL represents a novel chemical entity that inhibits HBV replication by regulating HNF1α mediated HBV transcription, which may provide a new perspective for HBV therapeutics.


Assuntos
Vírus da Hepatite B , Isatis , Animais , Furanos , Vírus da Hepatite B/metabolismo , Humanos , Isatis/genética , Lignanas , RNA/metabolismo , Transcrição Viral
18.
Physiol Plant ; 174(3): e13713, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35561122

RESUMO

APETALA3 (AP3) and PISTILLATA (PI) are B-class MADS-box floral homeotic genes of Arabidopsis and are involved in specifying the identity of petals and stamens. In the present work, IiAP3 and IiPI, the respective orthologous genes of AP3 and PI, were cloned from Isatis indigotica. By expressing in ap3-6 and pi-1 homozygous mutant and in wild-type Arabidopsis under the control of AP3 promoter or CaMV 35S promoter, we demonstrated that IiAP3 and IiPI were functionally equivalent to AP3 and PI of Arabidopsis. Referring to previous reports and the research results in the present work, expression patterns of AP3 and PI homologs are not the same in different angiosperms possessing diverse floral structures. It suggests that the alterations in expression may contribute to the changing morphology of flowers. To further determine the relationship between IiAP3 and IiPI, the coding sequences of the different structural regions in these two proteins were swapped with each other, and the data collected from transgenic Arabidopsis plants of the chimeric constructs suggested that MADS domain was irreplaceable for the function of IiAP3, K domain of IiAP3 was involved in specifying the identity of stamens, K domain of IiPI was mainly related to the formation of petals, and C-terminal region of IiPI was involved in characterization of stamens. In addition, a complete KC region of these two proteins was more effective in phenotypic complementation of the mutants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Isatis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/genética , Isatis/genética , Isatis/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
19.
Environ Sci Pollut Res Int ; 29(42): 64205-64214, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35469387

RESUMO

The current study was conducted to investigate the role of sulfur (S) and reduced glutathione (GSH) in mitigating arsenic (As) toxicity in Isatis cappadocica and Erysimum allionii. These plants were exposed for 3 weeks to different concentrations (0, 400 and 800 µM) of As to measure fresh weight, total chlorophyll, proline and hydrogen peroxide (H2O2) content, As and S accumulation, and guaiacol peroxidase (POD) and glutathione S-transferase (GST) along with the supplementation of 20 mg L-1 of S and 500 µM of GSH. Results revealed the significant reduction of fresh weight (especially in E. allionii), activities of POD and GST enzymes and proline content as compare to control. However, the application of S and GSH enhanced the fresh weight. Inhibition in H2O2 accumulation and improvement in antioxidant responses were measured with the application of S and GSH. Hence, the supplementation of S and GSH enhanced fresh weight and total chlorophyll in both I. cappadocica and E. allionii by alleviating the adverse effects of As stress via decreased H2O2 content and restricted As uptake.


Assuntos
Arsênio , Erysimum , Isatis , Antioxidantes/metabolismo , Arsênio/toxicidade , Clorofila/farmacologia , Suplementos Nutricionais , Erysimum/metabolismo , Glutationa/metabolismo , Glutationa Transferase , Peróxido de Hidrogênio/farmacologia , Isatis/fisiologia , Estresse Oxidativo , Prolina/metabolismo , Plântula , Enxofre/farmacologia
20.
J Asian Nat Prod Res ; 24(6): 503-517, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469506

RESUMO

Eleven new sulfonated alkaloids (1 - 11) having diverse structures were isolated from an aqueous extract of the Isatis indigotica root (ban lan gen). Their structures were determined by spectroscopic data analysis, chemical method, and theoretical calculation, of which (-)-4 was proved by single crystal X-ray diffraction.


Assuntos
Alcaloides , Isatis , Alcaloides/química , Isatis/química , Estrutura Molecular , Extratos Vegetais/química , Raízes de Plantas/química , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...